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We propose a generalization of the Enskog equation for homogeneous 
dense systems including the complete three-particle dynamics. To this end 
the time derivative of the one-particle distribution is represented in the 
thermodynamic limit as the sum of three terms describing the effect of the 
initial s-particle correlations, collisions within s-particle clusters, and 
coupling of s-particle clusters to the surrounding gaseous medium, respec- 
tively. The analysis of cases s = 2 and s = 3 is performed both for hard 
spheres and for a smooth, repulsive interaction. On assuming the equilibrium 
structure and spatial dependence of terms reflecting the effect of the 
medium, we obtain for s = 2 the Enskog equation, and for s = 3 a new 
equation, going beyond the Enskog theory. Apart from the Enskog collision 
term it contains additional contributions, and can be shown to reduce to 
the Choh-Uhlenbeck equation in the long-time, low-density limit. 

KEY WORDS: l_iouville equation; kinetic theory; thermodynamic limit; 
hard spheres; Enskog equation; Choh-Uhlenbeck equation; binary collision 
expansion; reduced distributions; thermal equilibrium. 

1. I N T R O D U C T I O N  

This p a p e r  is devoted  to the s tudy  o f  the fo rm of  the kinet ic  equa t ion  describ-  
ing the  a p p r o a c h  to equi l ib r ium of  a dense,  homogeneous  system. We use 
and  fur ther  e lucidate  the  ideas fo rmula t ed  in our  previous  work  (1~ (this 
reference is hereaf ter  referred to as I) in which the Enskog  equa t ion  has been 
ob ta ined  by  app rox ima te ly  es t imat ing  the influence o f  the gaseous  m e d i u m  
on the occurrence  o f  b ina ry  coll isions.  Here  we take  a s tep fur ther  by  con- 
s ider ing an ana logous  p r o b l e m  at  the  level of  three-par t ic le  dynamics .  W e  
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thus go beyond the Enskog theory and arrive at a new kinetic equation, which 
includes in particular the complete effect of ternary collisions. The corre- 
sponding collision term depends on equilibrium correlations and can be shown 
to reduce to the Choh-Uhlenbeck form in the low-density, long-time regime. 
It is suggested (Section 6) that it could be used to study numerically the 
deviation of the self-diffusion coefficient from its value as predicted by the 
Enskog theory. Also, the kinetic parts of other transport coefficients could be 
investigated along the same lines. 

We found it interesting and illuminating to develop the theory simul- 
taneously for a gas with repulsive, short-range forces derivable from a regular 
(differentiable) potential, and for the hard-sphere system. The differences 
between these cases are discussed, supplying at the same time a new derivation 
of the basic equations of I, which makes the present paper self-contained. 

In Section 2 we discuss the evolution equation for the one-particle 
velocity distribution in the case of a finite system, and in Section 3 its form 
in the thermodynamic limit is established. This last point has been rarely 
systematically studied in the papers on the kinetic theory. We then recall 
(Section 4) the main ideas of I, and a simplified method of obtaining the 
Enskog equation for a hard-sphere system is presented. Section 5 contains 
a detailed discussion of the next step in our approach, going beyond the 
Enskog theory. It leads to a new kinetic equation, which is the most important 
result of the present work. Its relationship with the Choh-Uhlenbeck theory 
for moderately dense gases is analyzed. Finally, Section 6 is devoted to the 
discussion of the results and their possible applications. The details of more 
complicated calculations are given in appendices. 

2. EVOLUTION OF THE ONE-PARTICLE VELOCITY 
D ISTRIBUTION.  THE CASE OF A FINITE SYSTEM 

We consider a classical gas composed of N identical particles enclosed 
in a cube of volume ~. In the case of a smooth pair interaction the Liouville 
equation has the form 

O-t ON(X, t) = -- ~I""NpN(X, t) (1) 

Here pN(x, t) represents the probability density for finding the system at time 
t in the microscopic state x = (xl,..., xN), in which particles have phases 
xi = (ri, v~), i = 1,..., N. Their position and velocity vectors are denoted by 
r~ and v~, respectively. Here Ae z'''n is the Liouville operator. Defining 

�9 ~ ~V(r~j)(~ 8 )  
-~o' = v~ ~ and 3 ~ J  = ~rtj ~vj ~ (2) 
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we have 

where 

~ . . . N  = s + 8S~..'N ( 3 )  

N N 

~~ = Z -~d and 82ce ~'''N = ~ 8 ~  's 

V(r~j) is the central repulsive pair potential of finite range a, r~j = [r~ - rjl , 
' N and ~,j) ~- 2~v=i ~ = i + l -  
In the case of a hard-sphere system the analog of Eq. (1) takes the 

form (2) 

@/St)pu(x, t) = -c~l""zcpN(x, t) (4) 

~1...., is called a pseudo-Liouville operator and is given by 

N 

= _ = ( 5 )  

where 

T(/j) = lim ~2 ( d~ (v,#){8(r~j - o)N] - 8(r~j + o)} e x p ( -  s (6) 
~xao dv~j~ > 0 

In Eq. (6), v~j = v~ - vj, r~j = r~ - rj, ~ = o/a, a is the hard-sphere diameter, 
and the integration is carried over the solid angle with restriction to the 
hemisphere vo.6 > 0. Operator b~ acts on the velocity variables vx .... , vu, 
changing them according to the hard-sphere binary collision law 

b~'v~ = v/ = v~ - (v~#)~ 

b~'vj = v/  = vj + (v~j~)~ (7) 

b ~ v ~ = v ~ ' = v ~  for a # i , j  

Equation (4) can be formally obtained from Eq. (1) by replacing 85e ~'''N by 
( -TI ' "N) .  Operators 85eo and T((]) have the following important common 
property: 

fav, f dvj &oq~" = 0 (8) 

f dv, f d v j T ' ( i j ) = O  (9) 

Equations (8) and (9) should be understood in the operator sense. Equation 
(8) is an immediate consequence of the fact that 8~o,~. is the first-order 
differential operator in velocities [see Eq. (2)]. The proof  of Eq. (9) follows 
directly from the observation that the Jacobian of transformation (7) equals 
1, and that v ~  =-v~ ;~ .  In what follows we shall deduce the evolution 
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equation for the one-particle velocity distribution from Eq. (1), using only 
Eq. (8) as far as the properties of operator 8s are concerned. Equation (9) 
permits us then to write the corresponding equation for the hard-sphere 
system by simply replacing everywhere 8s by -T( / j ) .  

The formal solution of Eq. (1) can be written as 

p~(x, t) = s~; ~p~(x, 0) (10) 
where 

St't "N = e x p ( -  .L~~ (11) 

is the N-particle streaming operator. We are interested in the evolution of 
the velocity distribution 

9(v~, t) = f u  f dv ~-~ Pp,(x, t) (12) 

H e r e S d v N - l = f d v 2 . . . f d v N a n d  

Defining 

we have 

P= n-~f dr1 ...f dry= p2 (13) 

Q = Q2, QP = PQ = 0 (15) 

and from Eq. (1) we get 

(c~/c3t)9(va, t) = fU  f dv N- ~{P(-  Ae~'"N)PpN(X , t) 

+ P( - 5e I'N) QS~'t'NpN(x, 0)} (16) 

For a smooth potential the relations 

PLao' = Leo'P = 0 (17) 

P 3s = 0 (18) 

imply that pzpl...~p = 0, so that the first term in the rhs of Eq. (16) vanishes. 
For a hard-sphere system, however, PT(O')P # O. Using Eq. (9) and the 
symmetry in variables x2,..., xN, we get 

f~N f dvN-~ p ( _  c2~...N)ppN(x ' t) 

(N - 1)n-  f dx2 T(12)92(vx, v2, t) (19) 

where 9u is the two-particle velocity distribution. 

Q = I - P (14) 
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In order to separate in Eq. (16) the evolution of the velocity distribution 
from that of correlations (for the general ideas of the kinetic theory followed 
here see Refs. 3 and 4) we introduce the so-called irreducible propagator 

~ i  N = Q e x p ( -  S y l ~  Qt )Q (20) 

related to the streaming operator (11) by the equation 

Qs~'; "N = ~ i  N - ~';'~rLel"N �9 PSFt N (21) 

The symbol * denotes here the time convolution defined for any two operators 
(functions) At and Bt as 

At * Bt = d'r At-~B, (22) 

Equation (21) results directly from the operator relation 

e x p ( - J / t )  - exp(-,A/'t) = exp(-,A:t)  [,A/" - Jd] �9 e x p ( - ~ ' t )  (23) 

by putting Me' = s and ,,4/" = ~I...NQ. Identity (23) will be frequently 
used in the text. 

In Appendix A we prove the following important relation: 

N f dv ~- 1 p ( _  ~I...N)~v~.N 

f , U_l(,g" N! = av ~ . ,=2 (U~  a ) t ~ k i ~  

+ (N - s - 1)! ~ - i "  * (s _ s (24) 

where 

~_. i . ,  = e ( ~ e l  _ ~ ) ~ 5 ,  ( ~ e ~  _ s e ~ 9 ~  V , . . . ,  ( ~ . . . ~ - 1  _ ~ - . . o ) ~ t ~ . ~  

(25) 

Equation (24) is valid in the space of functions symmetric in variables x~ .... , 
xz~, for any s = 2, 3 ..... s < N. In particular, when s = N - 1 it takes the 
form 

N f dv ~-~ P(-~r  = f dv~-~ ~ N! ~=2 (U - a)l ~ ' ~  (26) 

We now multiply both sides of Eq. (16) by n = N/f2, insert in the second 
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term in its rhs relation (21), and use Eq. (24). A simple calculation based on 
Eqs. (8) and (21) yields 

n ~ ~(vl, t) 

= 2 f ~ - l f  dr2 "'" f dva{~['t'0"f~(xl "'" x~, O) 
0,=9.  

+ Xo, + a . f  

x ~-~'~(~e 1"''~ - ~,e ~'''~+~) ,f~+~(x~ ... x~+~, t) (27) 

For s = N - l, using Eq. (26) we get in a similar way 

n ~ cp(vl, t) 

N =,,~=2 ~~ dv2""f dva{~'t'af~ 
+ fggi "= �9 f~(x, ... x0", t)} (28) 

In Eqs. (27) and (28) there appear the reduced distributions 

f a ( X l  "" X a '  t )  = (N ~ a)! dxa+ l ... dxu pN(xl ... xu,  t) (29) 

and collision operators ffgi'0" defined by 

f#~.~ = ~a_.~.0"(_ s (30) 

By replacing in Eqs. (20), (25), and (30) the Liouville operators by the pseudo- 
Liouville operators [see Eq. (5)] we obtain the hard-sphere kinetic operators 
--I"-N --l.--a --l-..a ~ - t  , ~ - t  , and respectively. Then, taking into account Eqs. (19) and 
(29), we write the analog of Eqs. (27) and (28) for the hard-sphere gas in the 
form 

n ~-~ q~(vl, t) 

= f~ f dr2 PT(12)Pf2(xx, x2, t) 

f f + ~,  f~a-~ dvg. ". dv0"{~x-'~'af~(x~ .." x~, O) 
a = 2  

+ f~-t *f~(xl "- x0", t)} + f2 s dv2 -" dv~+l 

x ~-;'~(.o~ ~ . . . . .  ~ '"~+~) * f~+~(x~ .--x~+~, t) (31) 
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n ~7 ~O(Vl, t) 

= fl f dr2 PT(12)ef2(xl ,  x2, t) 

f J + ~ ,  n ~  dr2 ... d v o { ~ _ i % ( x l  ... xo, o) 
a = 2  

+ ~ i  "~ * f~(xl  "" x~, t)} (32) 

It is important to notice that the last term in the rhs of Eq. (27) can be 
transformed by using the BBGKY hierarchy equation 

+ s -el'''s f~(xl ""xs, t) = dxs+~(-3~cPJ~+l)f~+l(xl "'" xs+l, t) (33) 
= 

to the form 

(34) 

The same can be done for Eq. (31), since Eq. (33) with ( -  3 ~ ' )  replaced by 
T(ij) holds for the hard-sphere gas. The structure of Eqs. (27) and (31) emerged 
from the separation in the irreducible propagator ~k'i "N (or ~ i . N )  of the part 
depending only on s-particle dynamics. The effects of collisions between more 
than s particles are described by the last term in both equations. Equations 
(27), (28), (31), and (32), which are valid for a finite system, are usually 
supplemented with periodic boundary conditions. In the next section we 
discuss their form in the thermodynamic limit. 

3. EVOLUTION OF THE ONE-PARTICLE VELOCITY 
DISTRIBUTION.  THE CASE OF AN INFINITE SYSTEM 

We denote the thermodynamic limit by 

lira = lim 
ct~ N-* ~ ,f~ ~ oo ,N / f2= n=cons t 

(35) 

For all distributions calculated in this limit capital letters will be used. E.g., 
we write 

lim 9(vj, t) = ~(vj, t) 
~o (36) 

limfa(xl ... x~, t) = F~(xl ... x~, t) 
c o  

The limits (36) are supposed to exist for all times t. 
Consider next correlation functions ga(xl ... Xa, t), a = 2, 3 , . ,  defined 
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by the cluster decomposition of the reduced distributions, which for a 
homogeneous gas can be written as 

f l ( x l ,  t) = f l(vl ,  t) 
2 

fz(xl,  x2, t) = [1 + g2(xl,  x2, t)] ~ fl(vj, t) (37) 
J = l  

f3(xz ,  x2, xa, t) = 1 + g2(x~, xb, t) + ga(xl,  x2, x3, t) fl(vj, t) 
j = l  

etc. 
We shall assume that for all times t, functions ga(xl ." xa, t) go to zero 

when the distance between any pair of particles 1 ... a tends to infinity. This 
cluster property of correlations implies that 

lim f2-s I dr,~ . . . f  dri, g ~ ( x l . . . x ~ , t ) = 0 ,  1 -%< il < i~... < is ~< a (38) 
co d J 

and in particular leads to the relation 

lim opt(v1 ... v~, t) = 1-~ ~(vj, t) (39) 
oo J = l  

where 9~ is the a-particle velocity distribution (see I, Section 2). Using 
definitions (13) and (29), we thus obtain 

lim Pfa(xl "" x~, t) = ]-~ Fl(vj, t) (40) 
oo j = l  

where Fl(vj, t) = nqb(vj, t). In particular, 

lim f~ dv2PT(12)Pf2(xl ,  xe,  t) = dx2 T(12)1"- [ F~(vj, t) (41) 
] = 1  

which establishes the form of the first term in the rhs of Eqs. (31) and (32) 
in the thermodynamic limit. 

It follows from Eqs. (30) and (34) that in order to calculate the rhs of 
Eq. (27) for an infinite system it is sufficient to find in this case the action 
of the operator 

l f ... f dv= ~ i  "~ (42) 

on functionsf~(xl ..- x=, 0), 

(--Sel""~)Pf~(xl ... x~, t), ~ + s "el .... fa(x l  "" x~, t) (43) 
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[An analogous statement can be formulated for Eq. (31).] Due to the homo- 
geneity of the state of the gas (translational invariance of the reduced distribu- 
tions) functions (43) depend only on vectors r~ - U, 1 ~< i < j ~< a, as far 
as their position dependence is concerned. The analysis of operator (42) will 
be based on the following remark: 

Let us denote the free a-particle streaming operator by 

S 1 .... = exp( -  Yo~'at) (44) 0,  - t  

From the equation 

SL. i .a  1...~ 1...~ - So,-t + S0,_e * ( - 3 ~ l = ) S L i  ~ (45) 

[see identity (23)] and Eqs. (14) and (17) we get 

PS~_'i'~Q = 1 �9 P ( -  ~" 'gS~_';~ (46) 

Definition (13) of projector P and the fact that each interaction 3s ~j restricts 
the domain of integration over positions ri, rj to the region ]ri - U[ ~< a 
(=  range of the pair potential) show that in the thermodynamic limit operator 
PS~_'i"~Q is of order f2-L Equation (21) thus implies that we can replace in 
this limit the irreducible propagator ~Li  "a by QSLi"~Q, and even by S~_'i"~Q, 
since the last two operators differ precisely by PS~_'i"~Q. In this way we arrive 
at ant important result [compare with Eq. (25)] 

= no-  f f dv,~P(-~2)SL~ 

, Q _ 8~q~b3 S~2~, . . . ,  Q _ ~  3~q~ s~.i.~Q (47) 

Within the theory of homogeneous systems the above operator can be further 
transformed. The translational invariance of the integrand together with the 
fact that sequences 

(3~9o~2, 3 ~_cab 3 ..... ~ )  (48) 

introduce consecutively phase variables x2, x3,..., xa permit us to write 

= j axe(_ 

�9 

b = l  r = l  

(49) 
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where 

Q j =  I - P ~ =  I -  f~ -? f  dr1.-, f. drj 

It is clear from Eq. (49) that all the (a - 1) volume integrations inherent in 
the integrals over phases x2 ... xa are restricted by operators (48) to bounded 
regions whose linear dimensions are of the order of the range of the potential. 
This ensures the existence of the limit. The detailed analysis of the structure 
of operator (49) is given in Appendix B. Here we are interested only in two 
cases: a = 2 and a = 3. For a = 2 from Eq. (49) we get 

li~m f~ f dv2~L~ = lim f dx2 a (50) 

For a = 3, Eq. (49) and the results of Appendix B yield 

lirn f~2f dr2 f dr3 ~l~a 

J = limh=~f 1- dx2(-85e~2)Sk2t * Q~ dxa (--3,L'oba'S ~23'q,, -t 43 (51) 

r r  [ f ] = lira dx2 dx3(-3L~'~z)S~_~* ~ ( - 3 s  ~b3) SL2t 3 - Sb_3tf~ -~ dr3_b Q8 
oo d d b = l  

Equations (50) and (51) reduce the problem of writing Eq. (27) with s = 2 
or s = 3 for an infinite system to the calculation in this case of the action of 

projectors Q2 and Q3, f~-l j" dri Q3, i = 1, 2, on functions (43) with s = 2 

and s = 3, respectively. Using Eqs. (38) and (39), we get 

lim Q~f~(x~ ... xa, O) = F~(x~ -.. x~, 0) - 121 F~(vj, 0) (52) 
oo . / = 1  

lim Q~(-~'"~)Pfa(x~ .-. x~, t) = ( -  3La~'"~) 1-- ~ F~(vj, t) (53) 
oo J ' = l  

= N + 5fl  .... f~(xl ." x~, t) - N .= fl(vj ,  t) (54) 

a = 2, 3 ..... The action of projector f~- ~ f dr1 Q~ gives 

f lim f2-1 dr1 Qaf3(xl, x2, xa, O) = G2(x2, x3, 0) ~ F~(v~, 0) (55) 

lira f~-~ dr~ Qa(-~zza)Pfa(x~, x~, xa, t) = (--3&~ ~ F~(v~, t) (56) 
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(57) 

where Gdx~, x2, t) = lim~ ga(xl, x2, t). The corresponding results for pro- 
jector ~ -  1 f dr2 Qa are obtained from Eqs. (55)-(57) by interchanging indices 
1+-+2. 

Combining Eqs. (50) and (51) with Eqs. (52)-(57), we find the evolution 
equation (27) for s = 2 and s = 3 for an infinite system. In both cases it has 
the following structure: 

~t FI(vl, t) A(~) (Vl, t) + A~o)u(Vz, t) + A~a(vz, t) d i c o r r  \ (58) 

where., A(0drr describes the effect of the initial s-particle correlations, A(~ 
represents the influence of s-particle collisions (as if they were taking place 
in vacuum), and A~d gives the necessary correction to the s-particle collision 
term coming from the infinite surrounding medium. When s = 2 we get 

A(2) r., t) = f  c o r r l . * l  

2 

dx2 (-8~12)s~G(xl ,  x2, 0)1-I rl(v~, 0) 
. t=1  

A(2),, t) = f  eol lkVl  

2 

& 2  ( -  a ~ l = ) s ~ 3 ( -  8 ~  1=) �9 ] ~  rl(v~, t) 
j = l  

A~h(vl, t) = f dx~ ( -  8~1~)S~3 

, + ~1~  , t) - FI(vj, t) F2(Xl, x2 ~ "= 

(59) 

We can write at once the corresponding formulas for the hard-sphere system 
by adding term (41) and replacing everywhere ( -  35a ~j) by T(ij). An important 
simplification occurs because of the relation 

T(ij)S~d. _tT(ij) = 0 for all times t (60) 

(see Ref. 2; various properties of hard spheres are collected in Ref. 5). 
Equation (60) in particular implies that 

T(q)gG = 7(ij)S'o(_, (61) 
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Taking this into account, we obtain the following analog of Eq. (59) for hard 
spheres: 

f 2 
~-<,,,,-,X'~> t,, , t) = dx~ T(12)S~'_,G~(x~,, xz, 0 ) I - ]  F~(v,, 0) 

j = l  

J X<2)'~ontVl, t) = dx2 T(12)1--[ Fl(vs, t) 
. f=l  

A,2> r t) = dxz T(12)S~2_, * + ~.~12 F~(x, .a:2, t) 

~ ~ } 
b-7 ~ r~(v~, t) 

(62) 

When s = 3 the rhs of Eq. (58) is the sum of the terms 

A~3> e,~ t) A<2) r,, t) eorrkVl~ : ~oor r \Vl  

+ dxe a x a t -  s - t *  
b = l  

s,<,,_~r~, o:> ~,,1,:,,,, o~J • y _,{ ~tx,,x~,x3, - =, 

- s~-8,o~(xb, x3,  o ) I - - [  F~(v,, 0) 
j = l  

A `~>" I) A~ , . ,  t) + ~ dx~. dx3 ( -  ~s oolltu = ,~0o11\.1 

3 
* ( -  3s & D#123) -- S~t(--  3s * 1-~ F~(vs' t) 

.f A~d(v~, t) = dx2 dx3 (-32#12)S~-] * ( - 3 s  #~ S~-] a 
= 

[(;-, ) ] , + ~ l : ~ a  F a ( X l ,  x 2 ,  Xa,  t )  - -  ~-~ .= F t ( v i ,  t )  

~7 ~ F~(v,, t) 

(63) 

The corresponding formulas for the hard-sphere gas read 
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X~3~ r,, t) = X ~2~ r .  t) corrkVl  ~ cor rkVl  

+ dx2 dxa T(12)S0Z2_t �9 T(b3) 
= 

• X~_~ ~ f~ (x~ ,  x~,  x~,  o) - I - [  F~(vj, O) 
j = l  

- s ~ o ~ _ ~ a ~ ( x ~ ,  x~, o)I~_ ' F~(v. O) 

~_(a~/,, t) = ~-~2)/., t) coltkVl ~ ~ XcollkV 1 

kf f + dx2 dx3 T(12)So~_t �9 T(b3)S~_237 ~3 �9 1-~ Fl(vj, t) 
= J = l  

~ ( 3 )  ( . ,  / ) =  ~ f dx2 f dxaT(12)S~2-t* Teba){sL~ 3 (64) medkVl ~ 
b=l 

- So, - t  * + ~ba F2(xb, x3, t)Fz(va_~, t) 

~ - ~  Fl(vj, t)] } 
0t j=~ 

We have thus established the form of the evolution equation for the 
velocity distribution of an infinite system both for a smooth pair potential 
and for the hard-sphere interaction. The cases of s = 2 and s = 3 will be 
further analyzed in the next sections on assuming the existence of the long- 
time regime in which the term A ( ~  (X(~) representing in Eq. (58) the effect 
of the initial correlations can be neglected. The justification of this assumption 
requires, especially for s = 3, a subtle analysis which can be found in Ref. 6. 

4. ENSKOG EQUATION FOR H O M O G E N E O U S  S Y S T E M S  

We begin by recalling the main ideas of paper I. In Section 3 it has been 
indicated that term A ~d  in Eq. (58) reflects the fact that s-particle collisions 
take place not in a vacuum but in an infinite gaseous medium. In the theory 
of dense gases this term should thus play a fundamental role. Clearly the 
presence of the medium shows in the structure of ~A~S~m~d via the appearance of 
terms 

~t + c~1...~ Fs(xl ... xs, t) - ~ .= Fl(vj, t) (65) 

[see Eqs. (59) and (63)]. In I we have developed the idea of approximating 
A~d for systems close to equilibrium by taking into account only the 
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equilibrium component of spatial correlations in Eq. (65). By this we mean 
the following: At complete equilibrium, where the reduced distributions have 
the form 

F~q(xl ..- xs) = W~(rl ... rs)Y~(rl ... r~)1-~ f]q(vJ ) (66) 
J ' = l  

with 

F]q(vj) = n(2rrkzT)- ~/2 exp( -  vT/2kBT ) 

Ws(rl ... r s ) =  e x p [ - ~  V(rij)/k~T] 

(kB is the Boltzmann constant, T is the temperature), term (65) reduces to 

~LPl"~F~q(xl ... x~) = W~(rl ... r,)A% 1"' "~ Y~(rl ..- rs) 1-~ r]q(vJ) (67) 
]=1  

We thus proposed to replace in ~A(~),~ed the exact expressions (65) involving the 
dynamics of the entire system by terms 

s 

Ws(rl ... r ~ ) ~ "  '~ Y~(rl --. r~) ~-~ Fl(vj, t) (68) 
J = l  

in which purely equilibrium spatial dependence has been retained. The non- 
equilibrium character of expression (68) is due uniquely to the deviation from 
equilibrium of distributions F~(vj, t) [compare with Eq. (67)]. Recently we 
have found that within the theory of the hard-sphere gas such an approxima- 
tion can be given a clear microscopic interpretation. This problem, which 
seems to us of theoretical interest, will be the subject of a separate paper. 
Here we restrict ourselves to the analysis of the resulting kinetic equations. 
Let us first consider the case s = 2 for the hard-sphere system. From Eq. 
(62), using approximation (68) and the relation 

T(ij)S~'_t[W~(r,j) - 1] = 0 (69) 

(see Refs. 2 and 5) we get in the long-time regime the equation 

~t F~(v~, t) = .I dx2 T(12)F~(vl, t)F~(v2, t) 

f dx2 T(12)So~.2_tSe~ 2 Y2(r~2) * Fl(v~, t)F~(v=, t) (70) + 

The second term in the rhs of Eq. (70) can be written as 

2 

- f  dx2 ~t{T(12)S~Z.-t[Y2(r12)- 1]}* j=~l Fl(v,, t) (71) 
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It is important to notice that the expression 

T(12)S~.2-t[Y2(r~2) - 1] (72) 

vanishes for times t >> T, where r is the average time that two colliding 
spheres need to separate beyond the range of the two-particle equilibrium 
correlations. In the long-time regime the variation of the velocity distribution 
over the time intervals of the order of ~- is supposed to be negligible, so that 
we replace term (71) by 

-limfdx~{f~d~-~T(12)Sgy_,[r~(r~)-l]}~:~ F~(v~, t) 

f = dx2 T(12)[Y2(r~2) - 11 ~ -  F~(vj, t) (73) 

But 

T(12)Y2(r12) = Y2(a)T(12) (74) 

Hence, within the above approximation Eq. (70) takes the familiar form of 
the Enskog equation for homogeneous gases 

j 0~ Fl(v~, t) = Y2(a) dx2 T(12)F~(v~, t)Fl(v2, t) (75) 

In I it has been shown that the Enskog equation is also well justified for 
smooth, strongly repulsive, finite-range potentials if the effect of the medium 
A(2) is estimated in accordance with Eq. (68). r o o d  

5. THREE-PARTICLE COLLISION OPERATOR FOR A 
DENSE H O M O G E N E O U S  GAS 

We now come to the main point of the present paper, which is the 
analysis of the kinetic equation (58) when s = 3. The theory will be developed 
first for the hard-sphere system, and the results for smooth potentials will be 
given at the end of the section. In accordance with our previous considera- 
tions, which led to Eq. (68), we replace the exact term ~-~3~ ~roed [Eq. (64)], 
representing the influence of the medium on ternary collisions, by 

f dx2 f dxa T(12)S~2,-t* T(b3){'~-~aWa(123)~23Ya(123) 
b = l  

3 

- Sg~,_tW2(b3)Seg 3 Y2(b3)} �9 I--[ Fl(vy, t) (76) 
J = l  

Here Wa(123) - Wa(rl, r2, r3), W2(b3) = W2(rb3), and the same abbreviated 
notation has been used for the arguments of functions I18, Y2 [see Eq. (66)]. 
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Moreover, in the long-time regime we neglect the effect of the initial correla- 
tions represented in Eq. (a) (64) by Aoorr. Then kinetic equation (58) takes the form 

O~ Fl(vl, t) = dx2 T(12) 1--[ FI(vj, t) 
] = 1  

2 

x {g~2t3[T ~23 + W3(123)~o~23Ya(123)] 
8 

- Sg3,_t,~g 3 Y2(b3)} * ~ FI(v,, t) (77) 
j = l  

where in writing the last term we have used relation (69) to omit the Boltzmann 
factor W2(b3) [compare with Eq. (76)]. 

The equation 

Wa(123)ZPo~2aYa(123) + T ~2a 

= ~23(Wa(123)Ya(123) - 1) - Ya(123)~a23W3(123 ) + ~.~r ~2a (78) 

together with the fact that s ~2a vanishes on the velocity distribution permit 
us to put the expression in the curly brackets in Eq. (77) in the form 

~t {-S~_2ta[,Wa(123)Ya(123) - 11 + Sga_t[Y2(b3) - 11} 

- S~_2ta Y3(123)~.~ a~2a Wa(123) (79) 

Here the first term is a time derivative, and according to the relation 

~ (At * Bt) - AtBo (80) At * ~t B t = -~t 

the corresponding contribution to the rhs of Eq. (77) will contain the term 

~--t dx2 dxa T(12)So~,2-t * T(b3)[ -Sk2 ta (Wa(123)Ya(123)  - 1) 

+ Sg2_~(Y2(b3) - 1)] *l--[ Fl(vj, t) (81) 

which can be neglected in the long-time regime on a similar basis as _~(~ 
[in Eq. (81) the equilibrium correlations play an analogous role to the initial 
correlations in Eq. (64)]. Taking this into account and using the formula 

~ ,  dxa dx2 T(12)S~,2_t * T(b3)XL2t a 
b = l  



Generalized Enskog Theory for Homogeneous Systems 449 

we deduce from Eq. (77) the kinetic equation 

f 2 ~, F~(v,, ,) = dxg` r ( ~ 2 ) ~  rl(v,, t) 

2 
+ 19, So,-t ~.. T(b3)[Ya(123)Wa(123) 

b=l 

t 3 - Y2(b3)Wg`(b3)] * 1-I Fl(vj, t) 
]=1 

(83) 

We shall separate the Enskog collision term in order to put in evidence the 
structure of the collision operator in Eq. (83). To this end, we use the identity 

f [  2 ] dra Y3(123)~123W3(123) + ~ T(b3)Ys(123)W3(123) 
b=l 

= n-lW2(12)~,r 2112(12) + f dra Y3(123)W2(13)W2(23)c212W2(12) (84) 

(for the proof see Appendix C), which permits us to write Eq. (83) in an 
equivalent form 

~ Fl(vl, t) = dx2 T(12) 1--[ FI(vj, t) 
]=1 

f + dx2 T(12)S~y_tWz(lZ)L-q~ ~z Y2(12) �9 I - I  Fl(vj, t) 
1=1 

+ ~0,-,L0§ 

- Ys(123)W2(13)W2(23)c~12W2(12) *s~=~ Fl(vj, t) (85) 

According to the results of the previous section, the first two terms in the rhs 
of Eq. (85) correspond to the Enskog collision term. Moreover, for the 
hard-sphere gas 

T(12)S~2_t Y~(123) W2(13) W9`(23)~ 12 W2(12) = 0 (86) 
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[see Eq. (60)], and combining this with Eqs. (69) and (74), we put the kinetic 
equation in the final form 

~t Fl(vl, t) = Y2((r)f dx2 T(12)I3I FI(vj, t) 
.r 

- f dx~ f dxa T(12){S~-~3 Ya(123).o~123 Wa(123) 
3 

+ Y2(cr)[T(13) + T(23)]} �9 I - I  Fl(vj, t) (87) 
j = l  

Equation (87) determines the evolution of the velocity distribution of a dense, 
hard-sphere gas. Its rhs corresponds to the action of the three-particle collision 
operator including the effect of the medium (functions Y2, Ys) on Fl(vl, t). 
With the use of operators 

= " " ~ , ~ i j  _ _  T(ij) T(ij) + W2(tj) o ~f~JW2(ij) (88) 

(for their interpretation see Ref. 2) we can rewrite Eq. (87), obtaining 

~t Fl(vl, t)= Y2(o)f dx2 T(12)ff-[ Fl(vj, t) 

- f dx2 _~ dxa T(12){-SL~ a Ya(123)Wa(lZ3)[T(12) + T(13) 

3 

+ T(23)1 + Y2(~r)[T(13) + T(23)]} * ~ rl(vj,  t) (89) 
$ = 1  

which gives the collision operator a particularly transparent structure. 
Let us compare this result with the Choh-Uhlenbeck equation C7~ (see 

also Ref. 8, Chapter 13) by considering the case of a moderately dense 
system. We thus develop the rhs of Eq. (87) in powers of number density n, 
and retain only terms proportional to n 2 and n 3. Since 

Y2(12) = 1 + n f dr3 [W2(13) - 1][W2(23) - 1] + O(n 2) (90) 

the term of order n 2 reads 

f ' dx~ T(12) 1~ ~ Fl(vj, t) (91) 

and thus corresponds to the Enskog-Boltzmann theory. Using expansion 
(90), we find that the next term ~ n a has the form 

f f 

- [Sl_2ta~12aWa(123) + T(13) + T(23)] . 1 7  Fl(v;, t) (92) 
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Equations (60), (61), and (69) permit us to rewrite expression (92) in the form 

f f dx2 dxa T(12)[W2(13) - 11[W2(23) - l] ~ Fl(vj, t) 

+ f dx2 f dx3 {~ T(12)[g~-~aW3(123) - g~['~-~W2(13) + g~-~W2(23)]J) 
8 

* ~ Fl(vj, t) (93) 
J = l  

In the long-time regime we replace the time convolution by 

lira f dx2 f dx3 for T(12)['L2~W3(123) -12 -13 r~o - S_dS_~W2(13) 
3 

+ $2-~W2(23)1] ~ Fl(vj, t) 
j = l  

f dx2 f dxa lim T(12)[SL2r3Wa(123) -12 -18 $2],W2(23)] = - s_~[s_~w~03) + 

8 

- [/413(123) - /412(13) - W2(23)]]1-- ~ Fl(vj, t) (94) 
j = l  

This procedure is analogous to that leading from Eq. (71) to Eq. (73), but 
requires a more subtle analysis. As we shall see in a moment, it leads to the 
Choh-Uhlenbeck theory and thus must correspond to the Bogoliubov func- 
tional hypothesis assuming F2 to be a time-independent functional of F~. 
Using Eq. (94) we write term (93) in the form 

lim f dx2 f dxa T(12){S~-~Wa(123) - X~W2(12)S~arW2(13) 
T-*oO 

8 

- S~_~W2(lZ)S2_arW2(23) + 1} ~-~ F~(vj, t) (95) 

where again Eq. (69) has been used. Defining the asymptotic operators 

-1...~ lim SI";~W~(1 1 .... o_o~ = - "" a)So,r (96) 

we thus deduce from Eq. (87) the following kinetic equation for a moderately 
dense, hard-sphere gas: 

J ' = l  

d d 
8 

• I--[ FI(vj, t) (97) 
J = l  
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It coincides with the Choh-Uhlenbeck equation 2 (Ref. 8, Chapter 
13). 

Our basic result, which is Eq. (87) [or (89)], can be looked upon as the 
generalization of the Choh-Uhlenbeck theory to the case of dense systems 
much in the same spirit as the Enskog equation generalizes the Boltzmann 
theory. Moreover, Eq. (87) still contains the time convolution, since in its 
derivation we have not used the Bogoliubov functional hypothesis underlying 
the Choh-Uhlenbe~k equation. 

Before ending this section let us finally remark that in a completely 
analogous way the theory can be developed for smooth potentials. Without 
entering into details, we give here only the final result, i.e., the form of the 
kinetic equation that is the analog of Eq. (87) for hard spheres. It reads 

ff-7~ FI(Vl, l) = f dx 2 ( -  a,~12)S1-2t{(-~,~12) --t- W2(12)~~ Y2(12)} 

f f  { *I- I  F~(vj, t) + dx2 dx3(- 3s p~2) -S~_]3Ys(123)LP~23W3(123) 
1=1 

+ S ~5 Y8(123) W2(13) Wz(23)~q ~12 W2(12) 

+ S*2t * ~, (-&s * t ~  Ft(vj, t) (98) 
b=l j=l  

In I we have shown that the first term in the rhs of Eq. (98) corresponds 
to the Enskog collision term. In the low-density limit, by retaining terms of 
order n 2 and n a we get from Eq. (98) the Choh-Uhlenbeck equation, if 
additionally the time convolutions are treated as in passing from Eq. (93) 
to Eq. (94). 

6. D I S C U S S I O N  

We have analyzed in the thermodynamic limit the evolution of the 
distribution Fl(vz, t), showing how to distinguish in the complete expression 
determining its rate of change [=(~/at)Fl(vl, t)] three contributions of 
different nature: ~ )  . ~ A~, ~oorr, Acon, and ~,=e~ [Eq. (58)]. Limiting the discussion 
to the cases of s = 2 and s = 3 and using the results obtained by Dorfman 
and Cohen ~6~ (see also Ref. 10) we could drop in the long-time regime term 
A~ representing the effect of the initial s-particle correlations. We then corr, 
interpreted the term A(~,)n as describing the rate of change of Fl(vl, t) resulting 
from collisions within s-particle clusters, without taking into account higher 
order collisions, coupling them to the remaining particles. The third contribu- 

* ~  due to the tion ~e~*c~ should thus introduce the necessary correction to ~oon 

2 We use here the terminology of Ferziger and KaperJ a~ In fact, Eq. (97) was also 
obtained by Green. cz~ 
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influence of the gaseous medium on the dynamics of s-particle clusters. We 
approximated this term in accordance with the ideas developed in I by assum- 
ing the equilibrium structure and spatial dependence in the relevant expres- 
sions [Eqs. (65)-(68)]. In this way we arrived at kinetic equations (70), (77) 
with the collision operators depending uniquely on s-particle dynamics, 
s = 2, 3, the effect of more complicated dynamical events showing only 
through the presence of equilibrium distributions II2, I13. For s = 2, in the 
case of a hard-sphere gas, we obtained the Enskog equation. The analogous 
equation for a smooth, repulsive interaction has been derived in I. The 
analysis of the case s = 3 has led us to a new kinetic equation both for hard 
spheres [Eq. (87)] and for a smooth potential [Eq. (98)]. In the low-density, 
long-time limit it corresponds to the Choh-Uhlenbeck theory [Eq. (97)], and 
can be thus looked upon as its generalization for a dense system. 

Because of the explicit separation of the Enskog collision term in Eq. 
(87), its form is well adapted for the study of the deviations of various 
quantities like the self-diffusion coefficient or kinetic parts of the transport 
coefficients from their values resulting from the Enskog theory. In fact such 
a study has been already performed at the level of three-particle dynamics 
by Sengers e t  a l .  ~5~ (for details of the calculations see Ref. 11), and it seems 
to us that the use of Eq. (87) [or (89)] to extend the analysis to dense systems 
would be worth trying. 

A P P E N D I X  A 

In order to prove Eq. (24) we notice that its rhs can be written as 

f dvU_ 1 < ~ N! R ~l.i.~ 
= - -  ( N - -  a)l 

N! [ ~  .... ,L~""v]~t i 'N} (A. 1) 
+ (N - s)------~ " ~ ; "  * 

Indeed, let us insert into Eq. (A.1) the relation 

N N N 

~ t  . . . . .  ~ I . . .N=  ~ (s . . . . .  .WI'"'J) - ~ ~ S~L,r (A.2) 
j=S+I i=s+l ]=~+i 

Then the second term containing 3~'J, s < j < i ~< N, does not contribute 
because of Eq. (8), whereas the first can be replaced by (N - s)(~,r 1 . . . . .  
~1...s+1), which follows from the symmetry in variables x~+~ . . .  X N .  (All the 
operators are considered in the space of functions symmetric in phases 
X 1 . . .  X N . )  

From definition (25) we have 

9 ~ . s  = 9 ~ i . s - ~ ,  ( ~ . . . , - ~  _ ~ l . . . 0 ~ t i . ,  (A.3) 
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Hence the relation 

~ k i  N = ~_'~'~ + ~ki'" �9 (~1""~ - ~~ (A.4) 

[see identity (23)] implies that 

- -~- t -  ~1 ..... 1 , (.~1...,- 1 - ~c,~l""0~vi'~_ (A.5) 

Inserting this into Eq. (A.1), we find the rhs of Eq. (24) with s repIaced by 
s - 1. It is thus sufficient to prove the validity of Eq. (24) for s = 2. In this 
case Eq. (A.5) takes the form 

~_5  + ~ _ 5 ,  (~e~  - ~el  .~,)~1-;.~ = p(~e~ - ~ ) ~ t i  .~ (A.6) 

and from Eq. (A.1) (s = 2) we get 

R = N ( N  - 1) .f dvu- ~ P(A~ - ~ 

= N f dv N- ~ P ( -  s (A.7) 

The last equality follows from the relation 

P ~  = PoWo ~ = 0 (A.8) 

and the symmetry in variables x~ ..... xu. This ends the proof of Eq. (24). 

A P P E N D I X  B 

In order to analyze the structure of operator 

lira f ~ - i  f dr2 . . - f  dv~ ~ ~  (B.I) 

[Section 3, Eq. (49)] we shall make use of the binary operators 

C~,~m = (_  3s163 + 3~g'~ 1 ~< 1 < m ~< j (B.2) - t  

They are related to the j-particle streaming operator S t i  j by the equation 

( - 8 s  s = CUt  m + C ~ t  m * [3oL az"~ - 3Lal""~]S~ j (B.3) 

[see identity (23)]. The iteration of Eq. (B.3) leads to the expansion 

J 

( - ~ s  = C%"  + ~.  CJ-~ m * CS'~" 
(rip) ~ ( lm)  

J J 

+ ~ y .  c,,_~ m,  c,,_",, �9 c ~ ;  ~ + ... (B.4) 
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well known in the binary collision expansion theory. ~9~ An analogous pro- 
cedure can be applied to the hard-sphere gas. (2~ In this case, due to Eq. (61), 
the binary operators have the form 

C;_.', m = T(lm)So~: ' -~  ( B . 5 )  

Taking additionally Eq. (60) into account, we can write the analog of Eq. 
(B.4) for hard spheres as 

t 
T(I ,n)S tJ  = Cs m + ~ ~j_.~m , C~'-"?' 

(rip) 

+ +. . .  (B.6) 
(rip) (rs) 

without any restriction on the summations over pairs (np), (rs)  ..... Applying 
expansions (B.4) with j = 2, 3,..., a to the rhs of Eq. (49), we get the repre- 
sentation of operator (B.1) as the sum of terms of  the form 

lira dx2,~_tr2"12 * Q2 d x a  , . . _ t  * "-.-~ * "'" 

"'" f - - f C~'~r~ ( B'7 ) Q j _ ~  d x j  CS'~[ * CJ'~ z * ... * Q a - ~  dxa  C ~  '~ * ... * - t  ~ ,  

Let us consider the operator at the right side of projector Q~_~. It 
describes the contribution from a sequence of collisions between pairs of 
particles 

(ij), (kl),..., (ra),..., (uw)  (B.8) 

taking place during a finite time interval, not exceeding t [see Eq. (22)]. The 
binary operators C]'.Llt m (~] , lm)  vanish when the distance [rL - r,,I becomes 
greater than the range of the potential (hard-sphere diameter). Hence, the 
sequence of convolutions in Eq. (B.7) gives a nonzero contribution only when, 
during the time interval ~< t, there is a consecutive sequence of  collision 
configurations between pairs (B.8). Keeping this in mind, let us analyze the 
group of particles appearing in sequence (B.8) in a more detailed way. Any 
two of them, say d and p, will be said to belong to the same dynamical cluster 
if and only if among pairs (B.8) there can be found a subset (di~), ( i j 2 ) , . . . ,  (i,~p), 

corresponding to a chain of collisions between particles d and i~, i~ and 
is ..... and finally between i, and p. It is clear that because of the finite range 
of the interaction and finite time interval such a chain of  collision configura- 
tions "joining" particles d and p becomes impossible (for finite particle 
velocities) when their distance Ira - rpl is sufficiently large. Thus, if: 

(i) There are two or more particles from the set {1 ..... j - 1} in sequence 
(B.8) belonging to the same dynamical cluster, 
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then, when their distance is sufficiently increased, the operator 

f �9 �9 . . .  �9 . . .  �9 
C~,~ w (B.9) 

equals zero. In this situation the action of projector 

p j _ l =  f ~ - s + l f  dr1 . . . f  drj_l (B.10) 

on term (B.9) gives zero in the thermodynamic limit since at least one of the 
volume integrations is restricted to a bounded region. We conclude that in 
case (i) projector Qj_ 1 applied to (B.9) can be replaced by identity L 

Let us notice at this point that each of the dynamical clusters must con- 
tain at least one of the particles 1, 2,...,j - 1. This follows from the observa- 
tion that particles j , . . . ,  a in sequence (B.8) interact with particles i,..., r, 
respectively, where i < j,..., r < a. Hence, for any one of them there is always 
a chain of collisions ending in the set {1, 2 ..... j - 1}. We thus see that apart 
from case (i) there remains only one possibility, when: 

(ii) Each dynamical cluster in sequence (B.8) contains exactly one 
particle from the set {1, 2 ..... j - 1}. 

In this situation operator (B.9) does not depend on relative positions of 
particles 1, 2,..., j - 1. An immediate consequence is that if, moreover: 

The function to which operator (B.9) is applied does not depend on 
distances between particles from different clusters, 

then the action of Qj-1 gives zero. Indeed, because of the translational 
invariance of the integrand the result of the integration over phases xj .... , xa 
gives in this case a function independent of positions rl ,..., rj_ 1, and projector 
Qj-1 on such a function vanishes. This case, characterized by a complete 
lack of spatial correlations between particles 1,..., j - 1, is thus eliminated. 

Let us illustrate it on an elementary example corresponding to j = 3, 
a = 5. The sequence 

(13), (34), (25) (B.11) 

decomposes particles {1, 2 ..... 5} into two dynamical clusters {1, 3, 4} and 
{2, 5}, each of which contains one particle from the set {1, 2}. In this case 
operator (B.9) takes the form 

, ~ - t  * d x ~ _ t  * d x s ~ _ t  (B.12) 
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Suppose that it is applied to the function 

5 

g (xl, t)g (x2, t)I-I A(vj, t) (B.13) 
i = 1  

occurring in the cluster decomposition o f f s (x l  -.. xs, t) [see Eq. (37)]. For 
a homogeneous system, function (B. 13) depends on spatial variables (rl - r~) 
and (r2 - rs). It does not, however, depend on relative positions of particles 
belonging to different clusters. It follows that 

"~-t * dx4 * dx5 x4 t)g2(x2, xs, t) 

5 

I-~ f~(vj, t) = 0 (B.14) 
3"=1 

because the function to which projector {?2 is applied does not depend in this 
case on (rl - r2). 

,Consider finally the role of Qj_ 1 when: 

Operator (B.9) acts on a function that goes to zero when the distance 
between at least one pair of  particles from different clusters tends to 
infinity. 

In view of  our previous analysis, if the distance between two particles from 
different clusters increases indefinitely, the same must happen for any other 
such pair, otherwise operator (B.9) vanishes. But each cluster contains a 
particle from the set {1 .... , j  - 1}. Hence, in the case under consideration 
projector Qj_I is applied to a function that tends to zero when the distance 
between a pair of particles (at least one) from {1 ..... j - 1} tends to infinity. 
Then, for the same reason as in case (i), we can replace Qi-1 by identity L 

An example of this situation is obtained by applying operator (B.12) to 
the function 

5 

g2(xl, Xa, t) I -  I fl(vj,  t) (B.15) 
j = l  

which also occurs in the cluster decomposition o f f s (x l  -.. xs, t). Function 
(B. 15) vanishes when the distance between particles 1 and 5 tends to infinity. 
Since 1 and 5 belong to different clusters, we get 

P2 ( dxa C3-'~ 8 * dx4 C!'~ ~ * dxs CS-'t~Sg2(x~, t) 1-~ f~(vj, t) = 0 lim 
d t = 1  

(B.16) 

because projector P2 [see Eq. (B.10)] acts in this case on a function going to 
zero when It1 - rzl -+ oo. Since Q2 = I - P2, we can replace Q2 by identity L 
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The above rules when applied systematically to all projectors Qa-1, 
Qa-2 ..... Qa, Q2 permit us to calculate the action of terms (B.7), and conse- 
quently of the complete operator (B.1), on functions (43). Before ending this 
appendix let us consider the case of a = 3. According to Eq, (49), 

l a fdv fdvo  
= f dx2,'.2.1 , f ,~-t *Q2 dxa(-&Lala 3SFza)SL2taQa (B.17) 

In the binary collision expansions 

r3 ,~  ( c ~  c~_,~) ( - ~ e ~ ) s ~ _ V  = c ~  ~ + .~_~ �9 + + ... 

( - ~ e % s w  = c ~  ~ + .~_~ �9 + + . . .  

only the first terms Ca;~ a and Ca-~ 3 satisfy condition (ii). We are thus allowed 
to write 

lim ~ 2 f  dr2 f dva ..~L~t 3 

j �9 - , - t  * dxa ( - S A  ~ 3,L~za)S~-2t3Qa 

- liln f dx2 C2-~2, P2 f dxa (Ca-'~ a + Ca-'t2a)Qa (a.18) 

Equation (B.12) is equivalent to Eq. (51) of Section 3 since 

P~ f dxa Ca'Aa Q~ = f dxa (- f dr2 Q a 

and an analogous relation holds after interchanging indices 1 and 2. 

A P P E N D I X  C 

Here we prove Eq. (84), which reduces to 

W2(12)Aeo~2 Y2(12) = n f dr3 Y3(123)W2(12)LP~eW2(13)W2(23) (C.1) 

when the use of the relation 

~12a = Aoo~2a _ T(12) - T(13) - T(23) (C.2) 

is made. At equilibrium and for a smooth potential the hierarchy equation 
(33) with s = 2 in the thermodynamic limit yields 

s176 x~) = f dx3 (oW 12 - s z~12*~r'~q~" j - a  t~l, x2, xa) (C.3) 
J 
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Using Eqs. (66) and (67), we get f rom this 

W2(12)~r ~2 Yz(12) = n f dr3 (W2(12)~fo~2 W2(13) W2(23) Y3(123) 

- Wa(123)~o ~23 Ya(123)) 

But 

and 

f dr3 W3(123)Lfo 3 Y8(123) = 0 

(c.4) 

(c.s) 

W8(123) = W2(12) W2(13) W2(23) (C.6) 

Hence, the rhs o f  Eq. (C.4) is equal to the rhs o f  Eq. (C.1). We have thus 
proved Eq, (C. 1) for  smooth  potentials. Its validity for  the hard-sphere inter- 
action follows f rom the possibility o f  approaching the hard-core potential 
by  a sequence of  smooth  potentials. A direct p r o o f  of  Eq. (84) for  a hard- 
sphere gas is also possible. 
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